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A B S T R A C T

Approach/avoid model is used to analyze the neural regulation of maternal behavior in the laboratory rat. This
model proposes that the medial preoptic area (mPOA) and bed nucleus of stria terminalis (BNST) are brain
regions involved in facilitating mechanisms. By contrast, anterior hypothalamic nucleus (AHN), ventromedial
hypothalamic nucleus (VMH), and periaqueductal gray participate in the inhibiting mechanisms of neural
regulation of maternal behavior. We hypothesized that there are also facilitating and inhibiting mechanisms in
the neural regulation of paternal behavior. Here, we determined which neural areas are activated during pa-
ternal and aversive interactions with pups in the Mongolian gerbils (Meriones unguiculatus). By testing paternal
behavior, we selected 40 males aggressive toward pups and 20 paternal males. These males were organized into
six groups of 10 animals in each group: aggressive males that interacted with pups (AGG-pups) or candy (AGG-
candy), paternal males that interacted with pups (PAT-pups) or candy (PAT-candy), and males with testosterone
(T)-induced paternal behavior that interacted with pups (IPAT-pups) or candy (IPAT-candy). After interacting
with pups or candy, the brains were extracted and analyzed for immunoreactivity (ir) with c-fos. Males that
interacted with pups had significantly higher c-fos-ir in the mPOA/BNST than males that interacted with candy.
Males that displayed aggression had significantly higher c-fos-ir in the AHN, VMH, and periaqueductal gray than
aggressive males that interacted with candy. These results suggest that in the neural regulation of paternal
behavior in the Mongolian gerbil underlie positive and negative mechanisms as occurs in maternal behavior.

1. Introduction

The neuroendocrine basis of maternal behavior in mammals has
been extensively studied using the laboratory rat as the main model
(Factor et al., 1993; Fleming et al., 1980; Hansen et al., 1991; Koch and
Ehret, 1991; Numan and Insel, 2003). Maternal behavior occurs when
the tendency to approach and interact with stimuli from pups is greater
than the tendency to avoid these stimuli. The approach or avoidance of
pups depends on the physiological state of the female. Virgin female
rats avoid pups, but when they are treated with progesterone and es-
tradiol, which simulate the hormonal changes that occur at the end of
pregnancy, the avoidance behavior changes to maternal behavior
(Rosenblatt and Mayer, 1995; Dulac et al., 2014). This duality of

approach/avoidance involves several regions of the brain: a facilitating
mechanism that descends from the medial preoptic area (mPOA)
through the bed nucleus of stria terminalis (BNST) to the midbrain and
an inhibitory mechanism that descends from the middle hypothalamus,
anterior hypothalamic nucleus (AHN), and ventromedial hypothalamus
nucleus (VMH) to the midbrain (periaqueductal gray) (Numan and
Insel, 2003; Numan, 2014; Lonstein et al., 2015; Bales and Saltzman,
2016). Both neural regions involved in the facilitation and inhibition of
maternal behavior have multiple connections with other regions such as
the medial amygdala (MeA), which receives projections from the ol-
factory bulb (OB) (Numan and Insel, 2003; Numan, 2014; Dulac et al.,
2014; Bales and Saltzman, 2016).

Knowledge of the neural mechanisms that regulate maternal
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behavior has been obtained by using electrolytic lesions, exocytotoxic
lesions, magnetic resonance imaging, and neuronal activation markers
such as the products of early expression genes including the fos family,
which are used for mapping the functional anatomy of the neu-
roendocrine system (Baum and Everitt, 1992; Coolen et al., 1996;
Hoffman et al., 1993; Koch and Ehret, 1991; Lee et al., 2000; Lonstein
and Stern, 1998; Newman, 1999; Numan and Insel, 2003; Numan,
2014).

Some studies have shown that several regions that are part of the
neural circuit of maternal behavior also play an important role in reg-
ulating paternal behavior. In the California mouse, electrolyte lesions in
the mPOA, nucleus accumbens, and MeA cause a decrease in the time
invested in retrieving, crouching, and grooming (Lee and Brown, 2007).
In prairie voles, interactions with pups were found to activate regions
such as the mPOA, BNST, lateral septum, and MeA by using c-fos as a
marker of neuronal activity (Kirkpatrick et al., 1994a, 1994b).

As females, most virgin males of biparental species tend to attack
pups and possibly even kill them. However, when these males are fa-
thers, they show a paternal behavior (Elwood, 1977, 1980; Gubernick
et al., 1994; Vella et al., 2005). The transition from infanticidal male to
paternal male has a high adaptive value because the survival of off-
spring is vital for the continued existence of any species (Hrdy, 1979).
Virgin males aggressive toward pups of the Mongolian gerbil and
Mexican volcano mouse (Neotomodon alstoni) show paternal behavior
when they are primed with testosterone (T) (Luis et al., 2010; Martínez
et al., 2015; Luis et al., 2017). This duality in the behavior of males
toward pups is similar to that observed in females. Based on this, we
hypothesized that there are facilitating and inhibiting mechanisms in
the neural regulation of paternal behavior and that these mechanisms
underlie neural regions that are activated according to the response of
the male toward pups. The aim of this study was to provide evidence of
the existence of inhibiting and facilitating mechanisms in the neural
regulation of paternal behavior by using Mongolian gerbil (Meriones
unguiculatus) as the model. Neural circuit of paternal behavior has not
been established, although brain areas such as mPOA, BNST, OB, MeA,
lateral septum, and nucleus accumbens are involved in the regulation of
paternal behavior (Lee and Brown, 2007; Kirkpatrick et al., 1994a,
1994b; Lonstein et al., 2015). The Mongolian gerbil is a monogamous
species; the male significantly participates in the care of pups (Elwood,
1975). In the Mongolian gerbil, social factors such as copulation, co-
habitation with a pregnant female, and the presence of pups may ac-
tivate neuroendocrine changes that facilitate paternal behavior (Brown,
1993; Brown et al., 1995; Reburn and Wynne-Edwards, 1999). This
transition is associated with a significant increase in T (Martínez et al.,
unpublished data).

2. Materials and methods

2.1. Animals

In this study, we used virgin male Mongolian gerbils of age
180–210 days old. Gerbils were weaned between the age of 25 and
28 days. The animals were obtained from a breeding colony kept at the
Facultad de Estudios Superiores Iztacala, UNAM. The colony was
maintained under an inverted photoperiod of 12:12 h (light–dark cycle;
onset of light at 18:00 h) at an ambient temperature between 17 and
21 °C. Gerbils were fed with pellets of Lab Chow 5001 (Nutrimentos
Purina, México) and tap water ad libitum. At the beginning of the study,
three or four gerbils of the same sex were housed in a polycarbonate
cage (37×27×15 cm) with sawdust bedding. We used virgin male
Mongolian gerbils to avoid the effect of sexual experience. Virgin males
of this rodent may show an aggressive or paternal behavior toward
foreign pups of the same species. The criteria for aggressive male be-
havior included sniffing and attacking pups and moving them violently.
In addition, pups may be bitten if they are not withdrawn. Paternal
males sniff and touch pups with the nose and groom and crouch beside

them. Through screen tests of paternal behavior, 40 males aggressive
toward pups and 20 paternal males were selected; in this study, we
name males aversive to those males aggressive toward the pups because
virgin aversive female rats also attack the pups (Peters et al., 1991).
During these tests, each male was placed in a polycarbonate cage
(37×27×15 cm) with clean sawdust bedding. After 10min, two 1- to
3-day-old pups were introduced into the cage. The pups were with-
drawn quickly if they were attacked (Elwood, 1991; Martínez et al.,
2015). When the males displayed paternal behavior, the observation
period was for 10min. These selected gerbils were organized into six
groups of 10 animals in each group. In groups 1 and 2, we included
gerbils aversive toward pups; the males of group 1 interacted with pups
(AGG-pups) and those of group 2 interacted with candy (AGG-candy).
The gummy bear was used as control stimulus for its softness and size,
thereby trying to make it similar to the pups of the Mongolian gerbil.
Candy has also been utilized as the control stimulus in male–pup in-
teractions in prairie voles (Kirkpatrick et al., 1994a, 1994b). Groups 3
and 4 were integrated with paternal males. In group 3, males interacted
with pups (PAT-pups), whereas males of group 4 interacted with candy
(PAT-candy). In groups 5 and 6, we included males that were initially
aversive toward pups, but those males were primed with T to induce
paternal behavior (Martínez et al., 2015). The males of group 5 inter-
acted with pups (IPAT-pups), and those of group 6 interacted with
candy (IPAT-candy). Males with T-induced paternal behavior were in-
cluded to compare the neural activation of these males with that of
spontaneously paternal males. Before interactions with the pups or
candy, aggressive and paternal males remained in individual cages for
24 h, and they were not disturbed to isolate them of stimuli that could
cause neural activation. Tests of paternal behavior or interactions with
candy were performed on the morning of the following day. The T
concentrations were quantified to analyze the correlation of T levels
with neural activity.

All experiments were performed in accordance with the ethical
guidelines of the National Institutes of Health Guide for the Care and
Use of Laboratory Animals (NIH Publication No. 8023) and the ethical
guidelines and technical specifications of the Mexican Official Norm for
the Production, Care and Use of Laboratory Animals (Sikes and the
Animal Care and Use Committee of the American Society of
Mammalogists, 2016).

2.1.1. Induction of paternal behavior
Aggressive gerbils were primed with a T solution (1mg T/10ml of

sesame oil, Sigma-Aldrich, St. Louis, MO, USA) (Siegel and Rosenblatt,
1975). Each gerbil was injected subcutaneously in the dorsal region
with 0.1ml of this solution after asepsis of the zone with benzalkonium
chloride.

2.1.2. Tests of paternal behavior
At 24 h after isolation, behavioral tests were performed following

the method described above for the paternal behavior screening. Two
pups were used in each test session for a total of 240 pups. The test was
ended when pups were attacked. Six pups were slightly bitten, and their
wounds were healed with application of gentian violet (1%) because
this antiseptic has no odor. Then they were returned to their parents.
The exposure period was 90min for paternal males to interact with the
pups or candy and for aggressive males to interact with candy. In the
test with paternal males, the pups were changed two times during the
exposure period. These interactions were videotaped with a high-defi-
nition infrared camera (IR Bullet camera, 2.1 megapixels). Latencies of
the onset of paternal behavior (the time elapsed since the pups were
introduced until the male made contact with one of them) and the time
invested in crouching and grooming were recorded. Observations were
made between 11 and 14 h.
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2.2. c-fos immunohistochemistry

Five gerbils from each group were deeply anesthetized with a dose
of 10mg/kg xylazine and 90mg/kg ketamine for 70min after the in-
teractions because the product of the expression of c-fos reaches its
maximum between 60 and 90min following exposure to a stimulus
(Morgan et al., 1987; Hoffman et al., 1993). Then, they were in-
tracardially perfused with physiological saline (0.9%), followed by a
2% paraformaldehyde solution in sodium phosphate buffer (0.1M PB;
pH 7.6). The brain was then removed and postfixed for 18 h in the same
fixative solution. Subsequently, this tissue was processed and cut into
30 μm thick coronal sections with a cryostat. The neural areas were
located by comparison with the stereotaxic atlas of the Mongolian
gerbil (Loskota et al., 1974). The OB (+1.7mm from bregma, image
300), mPOA (−0.1mm, image 520, the same section), MeA and AHN
(both −0.8mm, image 590, the same section), VMH (−1.3mm, image
640, the same section), and periaqueductal gray (−3.5mm, image 860,
the same section). Once sections of the different neural areas were
obtained, the samples were placed on gelatinized slides (Nutrient Ge-
latin, 70151-500G-F; Sigma-Aldrich, CA, USA). Each of the following
steps was followed by rinsing in phosphate-buffered saline (PBS) for
5min: (1) 10min of incubation in 3% H2O2 in PBS, (2) 20min of in-
cubation in 5% normal goat serum (Vectastain ABC kit, PK-4000;
Vector Laboratories) in PBS, and (3) 16 h of incubation at 25 °C with
1:50 dilution of a rabbit c-fos antibody epitope located in the N-ter-
minus of human origin (sc-52; Santa Cruz Biotechnology, Inc.) in PBS.
After two 5min rinses in PBS, the sections were incubated with bioti-
nylated goat antirabbit antibody in PBS for 90min and rinsed two times
in PBS (Vectastain ABC kit, PK-6102; Vector Laboratories). The sections
were then incubated with an avidin–biotin complex (Vectastain ABC
kit, PK-6100; Vector Laboratories) for 30min, followed by two addi-
tional rinses with PBS. Finally, binding was visualized by using
3,3′‑diaminobenzidine as the chromogen (DAB Peroxidase Substrate,
SK-4100; Vector Laboratories). The sections were dehydrated and then
cover-slipped. Negative controls were obtained by omitting the primary
antibody incubation step. All neural tissues were processed with the
same assay. c-fos antibody has been utilized in other rodents such as
Microtus ochrogaster (Kirkpatrick et al., 1994a, 1994b).

2.2.1. Image analysis
The number of cells that showed c-fos immunoreactivity (ir) was

quantified in microphotographs with an area of 180 μm2.

Microphotographs were taken with a Motic camera (10megapixels)
attached to a Leica microscope. Three sections of the same area for each
animal were bilaterally quantified for c-fos-ir. After the data obtained
from each animal were added, the mean and standard deviation were
calculated for each group.

2.2.2. Hormone assay
Immediately after the parental behavior test, blood samples (250 μl)

were collected from the retro-orbital sinus of all the gerbils in each
group. Five males in each group were anesthetized with a mild dose
(5mg/kg xylazine and 60mg/kg ketamine) for obtaining blood sam-
ples, and the remaining five males were anesthetized with a heavy dose
for obtaining blood samples before perfusion. These samples were
collected in heparinized capillary tubes. Each sample was taken for
1min between 11 and 14 h. Plasma was separated by centrifugation
and stored at −70 °C. Hormonal analysis was conducted by ELISA. The
T level was measured with a DRG commercial kit (DRG Diagnostics,
Marburg, Germany) at a sensitivity of 0.083 ng/ml. The intra-assay and
inter-assay coefficients of variation were 3.9% and 4.6%, respectively.
The T assay was validated, and it demonstrated a correlation between
the dilutions of serum from Mongolian gerbils and the standard curve.
The recovery rate for T was 95.0% (r= 1.0). The plate was read in a
plate reader (model Multiskan Ascent V1.25, with a filter of 450-nm
wavelength; Thermo Electron Corporation).

2.3. Statistical analysis

2.3.1. c-fos immunoreactivity data
The number of c-fos immunoreactivity (ir) cells in the neural areas

of males of the AGG-pups, AGG-candy, PAT-pups, PAT-candy, IPAT-
pups, and IPAT-candy groups was analyzed with a nonparametric
Kruskal–Wallis test because of the non-normal distribution of the data
(Anderson–Darling test, P < 0.05). Bonferroni correction for multiple
testing was applied for pairwise comparisons.

2.3.2. Testosterone quantification data
The T levels between the AGG-pups, AGG-candy, PAT-pups, PAT-

candy, IPAT-pups, and IPAT-candy groups were also analyzed with the
Kruskal–Wallis test. Bonferroni correction for multiple testing was ap-
plied for pairwise comparisons.

a a a
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b b

c c c
c c c

mPOA 

BNST 

Fig. 1. Paternal males that interacted with pups
(PAT-pups and IPAT-pups) have a significantly
higher number of c-fos-ir cells in mPOA/BNST
than paternal males that interacted with candy
(PAT-candy and IPAT-candy) and aggressive
males (AGG-pups and AGG-candy). Data are pre-
sented as the median. Circles indicate outliers,
and letters indicate significant differences.
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Fig. 2. Representative photomicrographs showing c-fos-ir cells in the mPOA/BNST of the males of different groups. 3V= third ventricle, LV= lateral ventricle.
Coronal sections, scale bars= 100 μm.
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2.3.3. Behavioral data
The latency of the onset of paternal behavior between the PAT-pups

and IPAT-pups groups was compared with the nonparametric
Mann–Whitney U test. The time spent by these males in grooming and
sniffing was compared with the same test.

Finally, T levels were correlated with time invested in huddling and
grooming by using Spearman correlation analysis. This analysis was
also used to correlate the T concentrations with the number of c-fos-ir
cells in the mPOA and BNST.

Statistical analyses were performed using SPSS version 21.0 (IBM
SPSS, Armonk, NY).

3. Results

3.1. c-fos-immunoreactivity

The number of c-fos-ir cells varied significantly between the AGG-
pups, AGG-candy, PAT-pups, PAT-candy, IPAT-pups, and IPAT-candy
groups in the mPOA (H=27.17, df= 5, P < 0.05, Figs. 1 and 2) and
BNST (H=25.54, df= 5, P < 0.05, Figs. 1 and 2). Post hoc analyses
revealed that males of the PAT-pups group had significantly higher
number of c-fos-ir cells in the mPOA and BNST than males in the PAT-
candy, IPAT-pups, IPAT-candy, AGG-pups, and AGG-candy groups.
Males in the IPAT-pups group had higher number of c-fos-ir cells in
these areas than males of the PAT-candy, IPAT-candy, AGG-pups, and
AGG-candy groups (Bonferroni adjusted P=0.003).

The number of c-fos-ir cells in the AGG-pups, AGG-candy, PAT-pups,
PAT-candy, IPAT-pups, and IPAT-candy groups showed significant
difference in the AHN (H=23.95, df= 5, P < 0.05, Figs. 3 and 4),
VMH (H=24.97, df= 5, P < 0.05, Figs. 3 and 4), and periaqueductal
gray (H=22.78, df= 5, P < 0.05, Figs. 3 and 4). Pairwise comparison
revealed that males of the AGG-pups group had significantly higher
number of c-fos-ir cells in the AHN, VMH, and periaqueductal gray than
males in the AGG-candy, PAT-pups, PAT-candy, IPAT-pups, and IPAT-
candy groups (Bonferroni adjusted P=0.003).

The number of c-fos-ir cells in the OB and MeA in the AGG-pups,
AGG-candy, PAT-pups, PAT-candy, IPAT-pups, and IPAT-candy groups

was significantly different (H=25.49; H=27.23, df= 5, P < 0.05,
respectively, Figs. 5 and 6). Pairwise comparison revealed that males of
the PAT-pups group had significantly more c-fos-ir cells in the OB and
MeA than males of the AGG-pups, AGG-candy, PAT-candy, IPAT-pups,
and IPAT-candy groups. Males of the IPAT-pups group had a greater
number of c-fos-ir cells in these areas than males of the AGG-pups, AGG-
candy, PAT-candy, and IPAT-candy groups. Similarly, males of the
AGG-pup group had a greater number of c-fos-ir cells in OB and MeA
than males of the AGG-candy group (Bonferroni adjusted P=0.003).

3.1.1. Testosterone levels
The concentrations of T in plasma from the AGG-pups, AGG-candy,

PAT-pups, PAT-candy, IPAT-pups, and IPAT-candy groups showed sig-
nificant difference (H=56.03, df= 5, P < 0.05, Fig. 7). Pairwise
comparison revealed that males of the IPAT-pups group had sig-
nificantly higher T concentrations in plasma than males of the AGG-
pups, AGG-candy, PAT-pups, PAT-candy, and IPAT-candy groups.
Males of the PAT-pups group had higher concentrations of T in plasma
than males of the AGG-pups, AGG-candy, and PAT-candy groups. Un-
expectedly, males of the AGG-pups group had lower T concentrations
than males of the AGG-candy group (Bonferroni adjusted P=0.003).

3.1.2. Paternal behavior
The latency of the onset of paternal behavior between the PAT-pups

and IPAT-pups groups was significantly different, with a longer latency
in the onset of paternal behavior in the PAT-pups group (U=64.5,
P < 0.01, Fig. 8). The time invested in crouching over pups was sig-
nificantly longer in males of the IPAT-pups group than in males of the
PAT-pups group (U=55.0, P < 0.01, Fig. 8). Similarly, males of the
IPAT-pups group invested more time in grooming than males of the
PAT-pups group (U=57.0, P < 0.01, Fig. 8).

We did not observe significant correlations between the T levels in
plasma and the number of c-fos-ir cells in the mPOA (r=−0.87,
P > 0.05) and BNST (r= 0.38, P > 0.05) in males of the PAT-pups
group. We found no correlations between T levels and the number of c-
fos-ir cells in the mPOA (r=−0.00, P > 0.05) and BNST (r= 0.15,
P > 0.05) in males of the IPAT-pups group. No significant correlations

a
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b

b

c
c

c

c
c

c c c

c

c c c

Fig. 3. Number c-fos-ir cells in aggressive males that interacted with pups (AGG-pups) had significantly higher c-fos-ir in AHN, VMH, and periaqueductal gray than
aggressive males that interacted with candy (AGG-candy) and paternal males (PAT-pups, PAT-candy, IPAT-pups, and IPAT-candy). Data are presented as the median.
Circles indicate outliers, and letters indicate significant differences.
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were observed between the time invested in huddling and grooming
and the number of c-fos-ir cells in the mPOA (r= 0.53, P > 0.05;
r= 0.01, P > 0.05, respectively) and BNST (r= 0.74, P > 0.05;
r= 0.00, P > 0.05, respectively).

4. Discussion

Mongolian gerbil males that interacted (approached) with pups had
significantly higher number of c-fos-ir cells in mPOA and BNST than

Aq

Aq

Aq

Aq

3V

3V 3V

3V

AGG-pups

AGG-candy

PAT-pups

PAT-candy

IPAT-pups

IPAT-candy

AHN VMH Periaqueductal gray

3V 3V

Aq

Aq

3V3V

3V

3V3V

3V

Aq

Fig. 4. Representative photomicrographs showing c-fos-ir cells in the AHN, VMH, and periaqueductal gray of the males of different groups. 3V= third ventricle,
Aq= aqueduct. Coronal sections, scale bars= 100 μm.

L. Romero-Morales et al. Hormones and Behavior 105 (2018) 47–57

52



males that interacted with candy. These results showed that these
neural regions are strongly activated when Mongolian gerbil males
display paternal behavior, which indicates that the mPOA and BNST
regions are involved in the neural regulation of paternal behavior in
this rodent. In the laboratory rat, these neural areas are central to the
neural circuit that specifically regulates maternal behavior (Numan,
2007, 2014; Lonstein et al., 2015). In prairie voles, virgin males that
interact paternally with pups of the same species have higher activation
in the mPOA and BNST than males that interact with candy (Kirkpatrick
et al., 1994a, 1994b). In virgin California mouse males, electrolytic
lesions in the mPOA cause a decrease in the time spent in licking pups
and huddling pups (Lee and Brown, 2002, 2007).

Mongolian gerbil males that displayed an aggressive behavior to-
ward pups had a significantly higher number of c-fos-ir cells in the AHN,
VMH, and periaqueductal gray than aggressive males that interacted
with candy. These results suggest for the first time that these neural
regions are involved in the regulation of aversive interactions in males.
The AHN, VMH, and periaqueductal gray are components of the neural
circuit that mediates aversive and defensive behaviors in female la-
boratory rats (Canteras, 2002; Numan and Insel, 2003; Sheehan et al.,
2000). Exocytotoxic lesions of the AHN and VMH stimulate the display
of maternal care in nulliparous rats treated with estradiol and proges-
terone (Bridges et al., 1999). It has also been observed that electro-
stimulation of VMH inhibits the firing of neurons in the mPOA, which is
a region that is involved in the display of parental care (Mayer, 1981;
Lonstein et al., 2015). Behavioral evidence indicates that projections
from the AHN to the periaqueductal gray play an important role in
defensive behavior as well as fear and avoidance responses (Numan and
Insel, 2003; Sheehan et al., 2000).

The OB and MeA were activated in both paternal and aversive males
possibly because these neural regions are part of the positive and ne-
gative mechanisms that regulate paternal behavior in the Mongolian
gerbil. As already mentioned, in the female rat, these two neural areas
have multiple connections with the facilitators and inhibitors of the
mPOA/BNST and AHN/VMH regions, respectively, of the neural circuit
of the maternal behavior (Numan and Insel, 2003; Numan, 2014;

Brunton and Russell, 2015; Bales and Saltzman, 2016). The OB is an
important component of the olfactory system in rodents; in virgin fe-
male rats, the anosmia eliminates fear and withdrawal responses to-
ward pups (Fleming and Rosenblatt, 1974; Fleming et al., 1979;
Brunton and Russell, 2015). However, the physiological changes in
females postpartum make the odors from pups attractive (Kinsley and
Bridges, 1990). Similarly, virgin females with MeA lesions no longer
avoid pups, and it is possible that this neural structure mediates
avoidance responses toward pups (Fleming et al., 1980; Numan et al.,
1993). However, this avoidance mechanism would have to be depressed
at parturition for maternal behavior to occur (Numan, 2007). On the
basis of these results, we suggest that these neural areas can participate
in the positive and negative mechanisms that regulate paternal beha-
vior in this rodent. Studies in California mouse and prairie voles showed
that lesions in olfactory areas interrupt both paternal and maternal
behavior (Lee and Brown, 2007; Kirkpatrick et al., 1994a, 1994b;
Williams et al., 1992). The MeA has been related to neural regulation of
other social behaviors such as mating and aggression in the laboratory
rat and golden hamster (Mesocrisetus auratus) (Fleming et al., 1980;
Koolhaas et al., 1990; Lehman and Winans, 1982). In prairie voles,
paternal interactions activate the MeA (Kirkpatrick et al., 1994a,
1994b). Thus, these neural regions participate in multiple social be-
haviors. Therefore, they are activated during displays of these beha-
viors (Numan and Insel, 2003).

These results also showed that paternal or aversive interactions with
pups are strong stimuli for neural activation because aggressive and
paternal males that interacted with pups had significantly higher
number of c-fos-ir cells than the males that interacted with candy. In
prairie voles and California mouse, the number of c-fos-ir cells is greater
in males exposed to pups than in males that interacted with candy or
marble in brain areas such as the mPOA, BNST, OB, and MeA
(Kirkpatrick et al., 1994a, 1994b; Horrell et al., 2017). According to
Kirkpatrick et al. (1994a, 1994b), this increase is because pups are a
source of multiple stimuli that cause neuronal activation in males
during these interactions.

In this study, we observed that c-fos-ir cells in the mPOA/BNST in
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Fig. 5. Both paternal and aggressive interactions with pups had greater c-fos-ir cells in OB and MeA than those that interacted with candy. Data are presented as the
median. Circles indicate outliers, and letters indicate significant differences.
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Fig. 6. Representative photomicrographs showing c-fos-ir cells in the OB and MeA. opt= optic tract. Coronal sections, scale bars= 100 μm.
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males of the AGG-pups group were absent or very low in number. The
same was observed in the AHN, VMH, and periaqueductal gray regions
in males of the IPAT-pups and PAT-pups groups. These results reinforce
that these neural areas are involved in the regulation of paternal and
aversive interactions, respectively.

Male Mongolian gerbil that exhibited paternal behavior had sig-
nificantly higher concentrations of T in plasma than males that dis-
played aversion toward pups. The concentration of T was significantly
higher in males of the IPAT-pup group than in males of the PAT-pups
group. Furthermore, males of the IPAT-pups group had a significantly
higher number of c-fos-ir cells than males of the PAT-pups group in the
mPOA/BNST. However, no correlation was found between the T con-
centrations and the number of c-fos-ir cells in these neural areas.
Investigations in our laboratory have shown that paternal males have
significantly higher T levels than aggressive males (Martínez et al.,
unpublished data). According to Numan et al. (2006), the occurrence of
an approach toward pups (paternal behavior) depends on the physio-
logical state of the animal. This difference in T concentration may be
the hormonal basis in response to pups.

Males of the IPAT-pups and PAT-pups groups huddled, groomed,
and sniffed the pups. The time spent by males of the IPAT-pups group
was significantly higher than that of males of the PAT-pups group.
Furthermore, males of the IPAT-pups group also had a significantly
higher number of c-fos-ir cells in the mPOA/BNST than males of the
PAT-pups group. These results suggest that high T concentrations en-
hance paternal behavior and increase neural activity in these brain
regions that regulate paternal interactions. However, in males of the
IPAT-pups group, no significant correlations were observed between T
concentration and time invested in huddling and grooming and the

number of c-fos-ir cells in the mPOA/BNST. This could be because the
males of IPAT-pups group had T concentrations in plasma above of the
physiological level of those observed in virgin spontaneously paternal
males.

Males of the AGG-pups group had a significantly lower T con-
centration than males of the AGG-candy group; this result is surprising
because social interactions such as aggression between conspecific
males, copulatory behavior, and paternal behavior have been asso-
ciated with an increase in the T level (Gleason et al., 2009; Martínez
et al., 2015). However, in this study, a decrease in T levels is reported
when aversive males interacted with foreign pups of the same species.
We believe that the presence of pups could cause stress in these males,
which consequently affected the synthesis of T. Some studies have
mentioned that stress affects the biosynthesis of luteinizing hormone,
thus causing a decrease in T concentrations (Gray et al., 1978; Dong
et al., 2004).

These results suggest that the duality of the response of males to-
ward pups in the Mongolian gerbil underlie positive and negative
neural mechanisms, in which the mPOA/BNST are part of the positive
mechanism of paternal behavior and the AHN/VMH and periaque-
ductal gray are part of the negative mechanism of neural circuit pa-
ternal behavior.

Future studies in other species with paternal care should support
these results.
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